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Abstract

This lecture is intended to follow Phil’s talk on “Categorical Geometric Langlands and
Quantum Field Theory” and its relevance to the Langlands program. We start with a review
of field theory, extending the ideas of classical field theory to the path integral formulation
of quantum field theory (QFT). In particular we study the various physical “observables”
that arise out of the path integral, introducing the operator product expansion and Wilson
loops. Finally, we discuss disorder operators, whose insertion into the path integral changes
the space of fields that we integrate over to include singularities. For this, we study ‘t Hooft
lines via a the picture of monopoles in 3D.

Introduction

The “best hope” conjecture of Beilinson and Drinfeld for the geometric Langlands correspondence
states

DpBunGpCqq – QCpFlat
qGpCqq

where qG is the Langlands dual group to G and everything else has been explained in reason-
able depth by the lectures so far. Both sides of this equation have natural symmetries acting on
them, and producing eigenvalue data that agrees. These are analogues of the Hecke and Frobenius
eigenvalues of the arithmetic Langlands correspondence.

Goal 1. Want to understand spectral decomposition of DpBunGq and QCpFlat
qGq using ideas from

field theory.

Goal 2. To understand the symmetries that act naturally on both sides

Before we can tackle these goals from the side of physics, we need to develop some understand-
ing of the relevant objects that appear in the quantum field theory perspective.

1 Recall of Classical Field Theory and the Path Integral

Formulation of QFT

Here is a slight reformulation of Phil’s

Definition 1 (Classical Field Theory). A classical field theory E is a collection of the following
data:

• A manifold M known as the spacetime of the theory.
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• A space of section maps Φ : M Ñ X, where X is a Riemannian manifold called the “target
space”. Any such Φ is called a field.

• An action functional SrΦs from the space of field configurations into C (or more generally
some number field).

Classical field theory studies solutions to the classical equations of motion

tϕ P F s.t. δSpϕq “ 0u.

Example 2. When X “ R, we get a single scalar field φ (here Φ is φ). An action for this field
theory is often given by:

Srφs “

ż

M

|Bµφ|
2.

Example 3. Classical electromagnetism is defined by X “ T ˚M with an action given by:

SrAs “

ż

M

F ^ ‹F, F :“ dA.

More generally, Yang-Mills theory is defined when X “ T ˚M b g and given

SrAs “

ż

M

Tr pF ^ ‹F q , F :“ dA` A^ A.

where the trace is taken over the Lie algebra using the Killing form.

Though we do not know how to make sense of quantum field theory, the intuitive picture that
we have of it is given by the Feynman Path Integral. For a given quantum field theory, there
is quantity known as the partition function, defined as:

Z “
ż

DΦ e´SrΦs. (1)

This is an integral taken over the space of all fields. The measure on this space is mathematically
ill-defined in general.

Definition 4 (Classical Observable). A classical observable is a functional from the set of field
configurations to the ground field k.

Definition 5 (Observable). A quantum observable (which we will refer to as just an observable
in these lectures) is a functional from the a field theory into the ground field k. In the Feynman
picture, it can be seen as a statistical average of classical observables over all field configurations.

The partition function is an observable, as is the 1-point correlation function as x1:

〈Φpx1q〉 :“
1

Z

ż

DΦ Φpx1qe
´SrΦs.

In this example, the path integral over all configurations of Φ probes Φ at this single point, giving
essentially an expectation value. We can take expectation values of many different operators,
e.g. φpx1q, Bµφpx1q,1, φpx1qBµφpx1q on X. We denote operators by O. More generally, we define
correlation functions as

〈O1 . . .On〉g :“
1

Z

ż

DΦO1 . . .One´SrΦs.
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Definition 6 (TQFT). If the correlation functions of a given quantum field theory are independent
of the metric g, then the corresponding theory is called a topological quantum field theory
(TQFT).

In fact metric independence implies diffeomorphism invariance.

Example 7 (Chern Simmons Theory). It turns out the correlation functions of Chern-Simmons
theory on a 3-manifold M with Φ being the field A : M Ñ T ˚M b g and the action given by

SrAs 9

ż

M

Tr

ˆ

A^ dA`
2

3
A^ A^ A

˙

This is clear because the metric has no role in defining the action.

Proposition 8 (Operator Product Expansion). Within the path integral, a product of two local
fields can be replaced by a (possibly infinite) sum over individual fields. Namely, given two operators
Oa,Ob and evaluation points x1, x2, there is an open neighborhood U around x2 such that

Oapx1qObpx2q “
ÿ

c

Cc
abpx1 ´ x2qOcpx2q (2)

where Oc are other operators in the quantum field theory, and the Cc
ab are analytic functions on

Uztx2u (that often become singular as x1 Ñ x2).

In the 2D case, this yields the (possibly familiar) Laurent series associated with CFT. The
structure constants contain valuable information about the QFT that allow onw to view it alge-
braically. In particular, they satisfy associativity conditions. The philosophy of the OPE is as
follows (elaborate Phil’s point here). This leads naturally to the next idea

Idea 9. The OPE coefficients, together with the 1-point correlation functions completely determine
the n-point correlation functions.

For example, a two-point function is simply given by:

〈Oapx1qObpx2q〉 “
ÿ

c

Cc
abpx1 ´ x2q 〈Ocpx2q〉 (3)

2 Wilson Loops

In general, there are other observables in a quantum field theory beyond correlation functions.
Consider a gauge theory:

Definition 10 (Gauge Theory). A gauge theory is a field theory with the action invariant under
the action of a Lie group G, known as the gauge group of the theory, acting at each point of M .

In general, gauge theories have a connection 1-form, denoted by A, which gives a way to
transport data along any given vector bundle E associated to a representation R of G. This allows
us to compare operators at different points

WRpγq “ exp

ˆ
ż

γ

A

˙

(4)
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Wilson loops transform (under a general transformation g P G), as:

WRpγq “ gpγp1qqWRpγqgpγp0qq
´1 (5)

in the special case of γ closed, we see this is gauge-invariant. This is called a Wilson loop. It can
be viewed as yielding an element of the group G in the representation R. In this case, the trace of
this element gives an invariant quantity, and so for γ closed we further add a trace.

Definition 11 (Wilson Loop). Given a field theory with gauge group G and a finite-dimensional
representation R of G together with a closed loop γ, we define the Wilson loop operator:

WRpγq :“ TrRpHolpA, γqq. (6)

The algebra of Wilson loops is simple. For γ Ñ γ1 the operator product expansion gives us that

WRpγqWR1pγ1q P SpanRiĂRbR1WRi
pγq. (7)

3 Disorder Operators

We give the idea of disorder operators rather informally as:

Idea 12 (Disorder Operator). A disorder operator associated to a given submanifold γ of M
constrains the fields in the path integral to have a certain singular behavior along γ.

As an aside: from the Hilbert space perspective, we have so far been studying operator insertions
between the vacuum state of the field theory:

〈Opx1q〉 “ 〈0|Opx1q|0〉 . (8)

However, the vacuum state is only one of many possible classical solutions to the equations of
motion for a given field theory. It is the one with zero action. In general, solutions to the equations
of motion δS “ 0 yielding a finite, nonzero action are called instantons.

Yang-Mills instantons on R4 are given by the (anti-)self-dual equations:

F “ ˘ ‹ F. (9)

If we demand that A is translation-independent along the x4 coordinate and define φ “ A4, these
equations become the Bogomolny equations for magnetic monopoles on R31

F “ ‹DAφ, DA :“ d` A. (10)

Consider the sphere S2
R of radius R in R3. Given a solution of the Bogomolny equations for A,

the associated curvature form F will give a certain Chern class to any vector bundle E over the
sphere.

Ordinarily, you would argue “R4 is trivial, the only vector bundles living on this should be
globally trivializable”. However, the solutions of the Bogomolny equations induce singularities
in the vector bundle structure. These singularities effectively change the topology of R3 so that
nonzero Chern classes can exist for the bundles over the space. In this way, insertions of monopoles
act as operators, changing the vector bundles of the fields we integrate over.

1Note that these solutions are not instantons, as translation invariance along x4 does not allow these classical
solutions to have the necessary decay conditions to yield finite action on R4. Still, when viewed on R3, it can be
shown that these solutions do give a finite action indexed by an integer known as the monopole number.
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Definition 13 (’t Hooft Operator). Given a closed curve γ and an element µ P g defined up to
adjoint action, the ’t Hooft operator Tµpγq localized on γ corresponding to µ demands that for
any point p on γ, in local coordinates x1 “ x2 “ x3 “ 0 defining γ we have

F pxq „ ‹3d
´ µ

2r

¯

(11)

with ‹3 the hodge star in the codimension 1 hyperplane perpendicular to γ.

More on this correspondence in lecture 2
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